Известь
Известь (ООО «Сипорекс»)
Технические характеристики
Строительной воздушной известью называется продукт, получаемый из известковых и известково- магнезиальных карбонатных пород обжигом их до возможно полного удаления углекислоты и состоящий преимущественно из оксида кальция.
Содержание примесей глины и кварцевого песка в карбонатных породах не должно превышать 6-8%. При большем количестве этих примесей в результате обжига получают гидравлическую известь. Воздушная известь относится к классу воздушных вяжущих: при обычных темпера – турах и без добавок пуццолановых веществ она твердеет лишь в воздушной среде.
Различают следующие виды воздушной извести:
· известь негашёную комовую;
· известь негашёную молотую;
· известь гидратную (пушонку);
· известковое тесто.
Магнезия MgO содержится обычно в карбонатных породах в широких пределах – от 0,5-3 до 10-20% и более. Присутствуя в извести в количестве до 5-8%, она относительно мало влияет на свойства продукта. При повышенном содержании магнезии известь приобретает слабые гидравлические свойства.
В зависимости от содержания оксида магния различают следующие виды воздушной извести:
· кальциевую – MgO не более 5%,
· магнезиальную – MgO от 5 до 20%
· доломитовую – MgO от 20 до 40%.
Качество воздушной извести оцениваются по разным показателям, основным из которых является содержание в ней свободных оксидов кальция и магния. Чем выше их содержание, тем выше качество извести.
Известь, предназначенная для производства автоклавных изделий, не должна содержать более 5% оксида магния. Активность высококачественных сортов маломагнезиальных известей достигает 93-97%.
Негашёная комовая и молотая известь оценивается также по содержанию в них углекислоты и потерям при прокаливании при 950-1000?С в течение 30 минут.
Важным показателем строительных свойств воздушной извести является выход теста. Он определяется количеством известкового теста, получаемого при гашении 1 кг извести. Чем выше выход теста, тем оно пластичнее и тем больше его пескоёмкость. Высококачественные сорта извести при правильном гашении характеризуются выходом теста в 2,5-3,5 л и больше. Такие извести называются жирными. Известь с меньшим выходом теста считают тощей.
К молотой негашёной извести предъявляются требования не только по суммарному содержанию свободных оксидов кальция и магния, но и по тонкости измельчения.
Основным показателем гидратной извести, а также известкового теста является содержание в них активных оксидов кальция и магния.
По этому признаку эти виды извести делят на два сорта:
· 1-го сорта – 67%
· 2-го сорта – 60%
(%-минимально допустимое содержание активных СаО и MgO ).
В молотую негашёную известь, а также в гидратную известь допускается вводить тонкоизмельчённые минеральные добавки в таком количестве, чтобы содержание СаО+ MgO в кальциевой негашёной извести 1- го сорта было не менее 65%, а 2-го сорта – 55%.
При введении тех же добавок в гидратную известь активность должна быть не менее 50% (1-й сорт) и 40% (2-й сорт).
Влажность гидратной извести не должна быть более 5%.
Воздушная известь 1-го сорта без добавок с Государственным Знаком качества должна отвечать дополнительным требованиям, в частности коэффициент вариации по содержанию активных СаО и MgO не должен быть более 3%. Содержание же активных СаО и MgO в гидратной извести должно быть не менее 70%, а влажность должна быть не более 4%.
Негашёная известь (комовая)
Известь негашёная комовая представляет собой смесь кусков различной величины. По химическому составу она почти полностью состоит из свободных оксидов кальция и магния с преимущественным содержанием СаО. В небольшом количестве в ней могут присутствовать неразложившийся карбонат кальция, а также силикаты, алюминаты и ферриты кальция и магния, образовавшиеся во время обжига при взаимодействии глины и кварцевого песка с оксидами кальция и магния.
Производство комовой негашёной извести состоит из следующих основных операций: добычи и подготовки известняка, подготовки топлива и обжига известняка.
Известняки добывают обычно открытым способом в карьерах. Плотные известково-магнезиальные породы взрывают. Для этого вначале с помощью станков ударно-вращательного (при твёрдых породах) или вращательного бурения (при породах средней прочности) бурят скважины диаметром 105-150 мм глубиной 5-8 м и более на расстоянии 3,5-4,5 м одна от другой. В них закладывают надлежащее количество взрывчатого вещества в зависимости от прочности породы, мощности пласта и требуемых габаритов камня.
Наблюдающаяся иногда неоднородность залегания известняков в месторождениях обуславливает необходимость выборочной разработки полезной породы. Выборочная добыча известняка повышает стоимость продукта, поэтому при определении технической и экономической целесообразности разработки тех или иных месторождений необходимы тщательные геологоразведочные изыскания.
Полученную массу известняка в виде крупных и мелких кусков погружают в транспортные средства обычно одноковшовым экскаватором. В зависимости от расстояния между карьером и заводом известняк доставляют на завод ленточными конвейерами, автосамосвалами, железнодорожным и водным транспортом.
Высококачественную известь можно получить только при обжиге карбонатной породы в виде кусков, мало различающихся по размерам. Поэтому перед обжигом известняк соответствующим образом подготавливают: сортируют по размеру кусков и, если необходимо, более крупные негабаритные куски дробят.
В шахтных печах наиболее целесообразно обжигать известняк раздельно по фракциям 40-80, 80-120 мм в поперечнике, а во вращающихся печах — 5-20 и 20-40 мм.
Так как размеры глыб добытой горной породы нередко достигают 500-800 мм и более, то возникает необходимость дробления их и сортировки всей полученной после дробления массы на нужные фракции. Это осуществляется на дробильно-сортировочных установках, работающих по открытому или замкнутому циклу с использованием щековых, конусных и другого типа дробилок. Дробить и сортировать известняк целесообразно непосредственно на карьере и доставлять на завод лишь рабочие фракции.
Обжиг – основная технологическая операция в производстве воздушной извести. При этом протекает ряд сложных физико-химических процессов, определяющих качество продукта. Цель обжига — возможно более полное разложение СаСО3 и MgCO3 * CaCO3 на СаО, MgO и СО2 и получение высококачественного продукта с оптимальной микроструктурой частичек и их пор.
Реакция разложения (декарбонизация) основного компонента известняка – углекислого кальция идёт по схеме: СаСО3 >< СаО + СО2. Теоретически на разложение 1 моля СаСО3 (100 г) расходуется 179 кДж или 1790 кДж на 1 кг СаСО3. В пересчёте на 1 кг получаемого при этом СаО затраты равны 3190 кДж.
Процесс диссоциации углекислого кальция – обратимая реакция. Её направление зависит от температуры и парциального давления углекислого газа СО2 в среде с диссоциирующимся карбонатом кальция.
Диссоциация углекислого кальция возможна лишь при условии, если давление диссоциации будет больше парциального давления СО2 в окружающей среде. При обычной температуре разложение СаСО3 невозможно, поскольку давление диссоциации ничтожно. Установлено, что лишь при 600 °С в среде, лишённой углекислого газа, начинается диссоциация углекислого кальция, причём она протекает очень медленно. При дальнейшем повышении температуры диссоциация СаСО3 ускоряется.
Разложение СаСО3 происходит не сразу во всей массе куска, а начинается с его поверхности и постепенно проникает к внутренним его частям. Скорость передвижения зоны диссоциации внутрь куска увеличивается с повышением температуры обжига.
Качество строительной воздушной извести зависит не только от содержания в ней свободных оксидов кальция и магния, но и от микроструктуры продукта, определяемой величиной и формой кристаллов СаО и MgO, а также величиной пор и распределением их в массе вещества.
При истинной плотности кальцита, основного компонента известняка, 2,72 г/см3 1 г вещества занимает абсолютный объём 1:2,27 = 0,36 см3. Из 1 г кальцита при обжиге образуется 0,56 г оксида кальция, который при плотности 3,4 г/см3 занимает объём 0,56:3,4 = 0,16 см3, т. е. в 2,25 раза меньше, чем исходный кальцит. Естественно, что уменьшение объёма сопровождается уменьшением общей пористости кусков и увеличением их средней плотности.
Декарбонизация известняков при низких температурах (800-850 °С) приводит к образованию оксида кальция в виде массы губчатой структуры, сложенной из кристаллитов размером около 0,2-0,3 мкм и пронизанной тончайшими капиллярами диаметром около 8 * 10-3 мкм.
Повышение температуры обжига до 900 и особенно до 1000С обуславливает рост кристаллов оксида
кальция до 0,5-2 мкм и значительное уменьшение удельной поверхности до 4-5 м2/г, что должно бы отрицательно отражаться на реакционной способности продукта. Но одновременное возникновение крупных пор в массе материала создаёт предпосылки к быстрому прониканию в него воды и энергичному их взаимодействию. Наиболее энергичным взаимодействием характеризуется известь, полученная обжигом известняка при температурах около 900С. Обжиг при более высоких температурах приводит к дальнейшему росту кристаллов оксида кальция (до 3,5-10 мкм), уменьшению удельной поверхности, усадке материала и понижению скорости взаимодействия его с водой.
Обжиг при 1400С и выше вызывает увеличение средней плотности, резкое уменьшение пористости и образование кристаллов оксида кальция и их конгломератов значительных размеров – 10-20 мкм и больше, что предопределяет замедленное их взаимодействие с водой, характерное для пережжённой извести.
Некоторые примеси в известняках, особенно железистые, способствуют быстрому росту кристаллов оксида кальция и образованию «пережога» и при температурах около 1300С. Это вызывает необходимость обжигать сырьё с такими примесями при более низких температурах.
Пережог в извести вредно сказывается на качестве изготовляемых на ней растворов и изделий. Запоздалое гашение такой извести, протекающее обычно в уже схватившемся растворе или бетоне, вызывает механические напряжения и в ряде случаев разрушение материала. Поэтому наилучшей будет известь, обожжённая при минимальной температуре, обеспечивающей полное разложение углекислого кальция и экономию топлива.
Выбор температуры обжига известняка зависит и от наличия в нём примесей углекислого магния. В отличие от углекислого кальция MgCO3 при нагревании разлагается при более низкой температуре: начало около 400С и полная диссоциация при 600-650С. Реакционная же способность образующегося при этом MgO, как и СаО, с повышением температуры обжига значительно уменьшается. Уже при 1200-1300С получается намертво обожжённый оксид магния – периклаз, который практически не обладает вяжущими свойствами и только при очень тонком измельчении начинает медленно взаимодействовать с водой. Достаточно активный оксид магния получается при обжиге доломитов и доломитизированных известняков при 850-950С.
Гидратная известь (пушонка) и известковое тесто
Комовая негашёная известь является полупродуктом. Если её применяют в гашёном виде, то предварительно в гидратную известь (пушонку) или в известковое тесто.
Гидратная известь – высокодисперсный сухой порошок, получаемый гашением комовой или молотой негашёной извести соответствующим количеством жидкой или парообразной воды, обеспечивающим переход оксидов кальция и магния в их гидраты. Гидратная известь состоит преимущественно из гидроксида кальция Са(ОН)2, а также гидроксида магния Mg(OH)2 и небольшого количества примесей (как правило, карбоната кальция).
Известковое тесто — продукт, получаемый гашением комовой или молотой негашёной извести водой в количестве, обеспечивающем переход оксидов кальция и магния в их гидраты и образование пластичной тестообразной массы. Выдержанное тесто содержит обычно 50-55% гидроксидов кальция и магния и 50-45% механически и адсорбционно связанной воды.
Основная операция при получении этих видов извести – гашение. Оно заключается в обработке извести водой. Обычно при гашении идёт самопроизвольный распад кусков извести на тонкодисперсные частички размером не более 5-20 мкм. Чем дисперснее частички гашёной извести, тем пластичнее получаемое из неё тесто и тем более ценными строительными свойствами оно обладает.
Высокая пластичность теста определяется содержанием в нём тончайших фракций гидроксида кальция и магния (0,02-0,5 мкм).
В гашёной извести должны отсутствовать непогасившиеся частицы оксидов кальция и магния, которые при последующей гидратации в затвердевших растворах и бетонах могли бы отрицательно влиять на их качество. Поэтому при гашении извести необходимо стремиться к полному переводу оксидов кальция и магния в их гидраты Са(ОН)2 и Mg(OH)2 и к получению продукта с максимальной дисперсностью частичек. Для этого необходим выбор рациональных технологических приёмов.
Гашёная известь (пушонка).
Процесс гашения представляет собой взаимодействие извести с водой: СаО + Н2О ><Са(ОН)2. При гашении извести выделяется значительное количество теплоты, составляющее 65 кДж на 1 моль, или 1160 кДж на 1 кг оксида кальция. При этом температура гасящейся извести может достигать таких значений, при которых возможно не только кипение воды, но и возгорание дерева. Само название негашёной извести – известь-кипелка обусловлено способностью её выделять большое количество теплоты, вызывающей кипение воды.
Реакция гидратации оксида кальция обратимая. Её направление зависит от температуры и парциального давления водяных паров в окружающей среде. Упругость диссоциации гидроксида кальция достигает
атмосферного давления при 547С. Однако частичная дегидратация возможна и при более низких температурах (300-350С) с образованием вторичного оксида кальция, обычно уплотнённого и плохо гасящегося в дальнейшем, поэтому для быстрого и полного гашения извести необходимо присутствие воды или насыщенных водяных паров.
Чем выше температура гашения извести (особенно паром) в гидратную известь-пушонку, тем крупнее и прочнее образующиеся агрегаты гидроксида кальция, почти не способные в дальнейшем в смеси с водой распадаться на тончайшие частички и давать высокопластичное тесто. При гашении извести в тесто целесообразно устанавливать температуру гасящейся массы в пределах 60-80 °С с тем, чтобы, с одной стороны, не было перегрева материала, а с другой – процесс взаимодействия извести с водой протекал бы достаточно интенсивно и скоро. Перемешивание материала предотвращает возможное образование плёнок Са(ОН)2 на частицах оксида кальция и прекращение её гидратации. Воду нужно вводить в материал в полном объёме или отдельными дозами с тем, чтобы удерживать температуру массы в указанных пределах.
При гашении извести в порошок необходимо также избегать перегрева продукта выше 100С, особенно при гашении высокоактивных быстрогасящихся видов извести.
Механизм взаимодействия оксида кальция с водой зависит от условий, в которых протекает реакция образования гидроксида кальция (свойства извести, агрегатное состояние воды – жидкость или пар, значение водоизвесткового отношения и др.).
Объём образующейся гидратной извести в 2-2,5 раза превышает объём исходной негашёной извести за счёт значительного увеличения размера пустот между отдельными частицами.
Теоретически для гашения извести необходимо 32,13% воды по массе СаО. Практически при гашении в порошок вводят в среднем 60-80% воды по массе извести-кипелки. Это обусловлено тем, что при гашении часть воды испаряется, а некоторое количество её (3-5%) расходуется на смачивание образующегося порошка гидроксида кальция.
При гашении извести в тесто расход воды увеличивают до 2-3 частей по массе на 1 часть извести- кипелки. При большем количестве воды получают известковое молоко, а при значительном избытке – известковую воду. Чем выше содержание в извести СаО, чем умереннее температура обжига, тем больше воды необходимо брать для гашения.
Оксид магния, полученный обжигом при 900-1000 °С, относительно быстро взаимодействует с водой, переходя в Mg(OH)2. Пережжённый оксид магния при обычных условиях гашения не гидратируется и гасится лишь в измельчённом виде насыщенным паром в автоклавах под давлением 0,8-1,5 МПа.
В гашёную известь (пушонку или тесто) попадает часть силикатов, алюминатов и ферритов кальция. В строительных растворах и бетонах эти соединения со временем переходят в соответствующие гидраты, способствуя повышению прочности и водостойкости получаемых материалов.
Заметно ускоряют или замедляют скорость гашения извести некоторые вещества. В частности, гидратацию ускоряют, вводя в воду для гашения хлористые соли в количестве 0,2-1% (CaCl2, NaCl и др.). Сернокислые соли (гипс, Na2SO4 и др.), а также некоторые поверхностно-активные вещества замедляют скорость гашения.
Гидроксид кальция образуется обычно в виде гексагональных пластинок со слоистой кристаллической решёткой. При быстром процессе взаимодействия активной быстрогасящейся извести с водой Гидроксид кальция возникает в виде дисперсных частичек, склонных к образованию агрегатов. Известь высокого температурного обжига, относительно медленно реагирующая с водой, даёт более крупные кристаллы Са(ОН)2. Поверхность частичек гидрата заряжена положительно, что, несомненно, благоприятно для взаимодействия его с кварцем или другими кремнеземистыми веществами, поверхность частичек которых заряжена отрицательно.
Растворимость Са(ОН)2 в воде в некоторой мере зависит от величины кристаллов. Растворимость гидроксида кальция в присутствии солей NaCl, CaCl2, MgCl2 и т. д. несколько увеличивается; в присутствии же гипса, а также Na2SO4 она уменьшается.
Гидроксид кальция, по данным ряда исследований, может присоединять воду с образованием кристаллогидратов различного состава: Са(ОН)2 * 6Н2О, Са(ОН)2 * 4Н2О, Са(ОН)2 * 0,5Н2О, устойчивых лишь при пониженных температурах.
В заводских условиях гидратную известь получают по следующей технологической схеме. Комовую негашёную известь со склада направляют в дробилку и измельчают до частиц размером не более 5-10 мм, а при большом содержании оксида магния – размером не более 3-5 мм. Для дробления извести применяют молотковые, а в последнее время ударно-центробежные дробилки, работающие в замкнутом цикле с ситами. При сильно пережжённой извести, полученной из прочного известняка, целесообразно использование конусных дробилок.
Известь в порошок гасят в специальных гасильных аппаратах (гидраторах) периодического и непрерывного действия. Гидраторы непрерывного действия более рациональны. В условиях интенсивного перемешивания с водой вначале образуется пластичная масса, которая постепенно в результате присоединения воды к оксиду кальция и её испарения рассыпается в подвижный горячий порошок.
Для непрерывного механизированного гашения извести предназначен гидратор барабанного типа. Производительность этого аппарата 5 т гашёной извести в 1 час.
Высококальциевые виды извести в гидраторе непрерывного действия обычно гасятся достаточно полно и сразу направляются на склад. Магнезиальные же и доломитовые извести подают в силосы для догашивания в течение 1-2 суток. После этого продукт направляют в воздушный сепаратор для отделения непогасившихся зёрен, которые подвергают тонкому измельчению и снова подают в силосы на вторичное гашение.
Насыпная плотность порошка гашёной извести 400-500 кг/м3. Гашёную известь (пушонку) поставляют потребителю в бумажных мешках или в контейнерах, а также в специальных вагонах, цементовозах.
На заводах силикатного кирпича молотую известь в смеси с песком иногда гасят во вращающихся барабанах паром под давлением 0,3-0,5 МПа. Обычно применяют барабаны вместимостью до 15 м3, вращающиеся с частотой 3-5 об/мин. Пар подают в барабан из котла. Процесс гашения занимает 30-40 минут (с загрузкой и выгрузкой материала). Такой способ обеспечивает полную гидратацию извести, даже с пережогом, в короткий срок.
Молотая негашёная известь
Известь негашёная молотая – порошковидный продукт тонкого измельчения комовой извести. По химическому составу она подобна комовой извести.
Тонкоизмельчённая негашёная известь имеет ряд преимуществ при изготовлении растворов и бетонов перед гидратной известью в виде порошка или теста. В этом случае нет отходов и все компоненты тонкоизмельчённой извести рационально используются во время твердения. Молотая негашёная известь характеризуется меньшей водопотребностью, чем гашёная известь. Удельная поверхность молотой негашёной извести обычно значительно меньше удельной поверхности гидратной извести, поэтому требуемую удобоукладываемость растворной или бетонной смеси на молотой негашёной извести получают при пониженном количестве воды. Снижение же водопотребности растворных и бетонных смесей способствует увеличению их прочности при твердении. Кроме того, негашёная известь, гидратируясь в уже уложенных в дело растворах и бетонах, связывает большое количество воды, переходящей в твёрдую фазу. Как известно, оксид кальция при переходе в гидрат связывает 32,13% воды. Всё это способствует получению растворов, бетонов и изделий на молотой негашёной извести повышенной плотности и прочности по сравнению с получаемым на гашёной извести.
При гидратном твердении молотой негашёной извести выделяется значительное количество теплоты, поэтому изделия на такой извести при температурах ниже нуля твердеют более спокойно и имеют лучшие показатели прочности, так как окружающие условия способствуют быстрому отводу теплоты и уменьшению термических напряжений.
Преимущества молотой негашёной извести способствуют её применению в производстве различных строительных материалов и изделий.
Благоприятные результаты при гидратном твердении молотой негашёной извести можно получить лишь при следующих условиях: применение извести тонкого помола; соблюдение определённого водоизвесткового отношения; отвод теплоты или использование других приёмов, не допускающих разогревания твердеющего раствора или бетона до температур, вызывающих интенсивное испарение воды (особенно при кипении); прекращение перемешивания растворной или бетонной смеси на определённом этапе гидратации извести.
Негашёную известь следует измельчать до удельной поверхности 3500-5000 см2/г, причём остаток на сите № 02 должен быть близким к нулю, а на сите № 008 не превышать 4-6%.
Количество пережога в молотой негашёной извести не должно превышать 3-5%. Твердение негашёной извести протекает нормально при содержании воды в растворной или бетонной смеси в пределах 100-150% по массе извести. При гидратации нормально обожжённой извести практически в течение первого часа после затворения её водой выделяется 1160 кДж теплоты на 1 кг оксида кальция. Для предупреждения интенсивного разогревания смеси несколько увеличивают расход воды, охлаждают её, частично гасят известь перед применением и т. п. Одним из простых способов является замедление скорости гидратации, а следовательно, и интенсивности тепловыделения с помощью добавок гипса, сульфата кальция, вводимых в воду для гашения в количестве 0,2-1,5%.
Замедление скорости гидратации при добавках 2-5% гипса по массе извести объясняют образованием плёнок гидроксида и сульфата кальция на поверхности ещё не прореагировавших частичек оксида кальция.
Молотую негашёную известь в чистом виде или с активными минеральными добавками получают по схеме, показанной на рисунке 2. Комовую известь, подаваемую со склада, подвергают дроблению, как правило, на ударно- центробежных дробилках до частиц размером не более 5-10 мм и затем тонко измельчают без добавок или, что рациональнее, совместно с какой-либо активной минеральной добавкой. Такими добавками служат доменные или топливные гранулированные шлаки, золы от пылевидного сжигания топлива, горелые породы, пуццоланы вулканического или осадочного происхождения и т. п. При их отсутствии и использовании молотой извести в производстве автоклавных материалов